Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 724
Filtrar
1.
Bioorg Med Chem Lett ; 101: 129672, 2024 Mar 15.
Artigo em Inglês | MEDLINE | ID: mdl-38387691

RESUMO

Influenza and COVID-19 continue to pose global threats to public health. Classic antiviral drugs have certain limitations, coupled with frequent viral mutations leading to many drugs being ineffective, the development of new antiviral drugs is urgent. Meanwhile, the invasion of influenza virus can cause an immune response, and an excessive immune response can generate a large number of inflammatory storms, leading to tissue damage. Toll-like receptor 3 (TLR3) recognizes virus dsRNA to ignite the innate immune response, and inhibit TLR3 can block the excess immune response and protect the host tissues. Taking TLR3 as the target, SMU-CX1 was obtained as the specific TLR3 inhibitor by high-throughput screening of 15,700 compounds with IC50 value of 0.11 µM. Its anti-influenza A virus activity with IC50 ranged from 0.14 to 0.33 µM against multiple subtypes of influenza A virus and also showed promising anti-SARS-CoV-2 activity with IC50 at 0.43 µM. Primary antiviral mechanism study indicated that SMU-CX1 significantly inhibited PB2 and NP protein of viruses, it can also inhibit inflammatory factors in host cells including IFN-ß, IP-10 and CCL-5. In conclusion, this study demonstrates the potential of SMU-CX1 in inhibiting IAV and SARS-CoV-2 activity, thereby offering a novel approach for designing antiviral drugs against highly pathogenic viruses.


Assuntos
COVID-19 , Elipticinas , Vírus da Influenza A , Humanos , Vírus da Influenza A/metabolismo , SARS-CoV-2/metabolismo , Receptor 3 Toll-Like/genética , Receptor 3 Toll-Like/metabolismo , Antivirais/farmacologia , Antivirais/uso terapêutico
2.
Acta Cir Bras ; 38: e385623, 2023.
Artigo em Inglês | MEDLINE | ID: mdl-38055383

RESUMO

PURPOSE: Diabetes mellitus is a serious health problem worldwide, and diabetic nephropathy is the complication. The diabetic nephropathy considerably enhances the oxidative stress, glycation, lipid parameters and inflammatory reaction. Ellipticine has potent free radical scavenging and anti-inflammatory effect. METHODS: In the current study, our objectives were to thoroughly examine the renal protective effects of ellipticine in a rat model of streptozotocin (STZ)-induced diabetic nephropathy (DN) and to elucidate the underlying mechanisms involved. For the induction of diabetic nephropathy, streptozotocin (50 mg/kg) was used, and rats were separated into groups and given varying doses of ellipticine (2.5, 5 and 7.5 mg/kg). The body weight, and renal weight were estimated. The inflammatory cytokines, renal biomarkers, inflammatory antioxidant, and urine parameters were estimated. RESULTS: Result showed that ellipticine considerably enhanced the body weight and reduced the renal tissue weight. Ellipticine treatment significantly (P < 0.001) repressed the level of blood urea nitrogen, serum creatinine, uric acid, blood glucose and altered the lipid parameters. Ellipticine significantly (P < 0.001) repressed the level of malonaldehyde and boosted the glutathione, catalase, superoxide dismutase, and glutathione peroxidase. Ellipticine treatment significantly (P < 0.001) reduced the inflammatory cytokines and inflammatory mediators. CONCLUSIONS: Ellipticine could be a renal protective drug via attenuating the inflammatory reaction, fibrosis and oxidative stress in streptozotocin induced rats.


Assuntos
Diabetes Mellitus , Nefropatias Diabéticas , Elipticinas , Ratos , Animais , Nefropatias Diabéticas/tratamento farmacológico , Nefropatias Diabéticas/prevenção & controle , Nefropatias Diabéticas/metabolismo , Estreptozocina/metabolismo , Estreptozocina/farmacologia , Estreptozocina/uso terapêutico , Elipticinas/metabolismo , Elipticinas/farmacologia , Elipticinas/uso terapêutico , Rim , Estresse Oxidativo , Citocinas/metabolismo , Mediadores da Inflamação/metabolismo , Peso Corporal , Diabetes Mellitus/metabolismo
3.
J Vet Sci ; 24(6): e83, 2023 Nov.
Artigo em Inglês | MEDLINE | ID: mdl-38031520

RESUMO

BACKGROUND: Ellipticine (Ellip.) was recently reported to have beneficial effects on the differentiation of adipose-derived stem cells into mature chondrocyte-like cells. On the other hand, no practical results have been derived from the transplantation of bone marrow stem cells (BMSCs) in a rabbit osteoarthritis (OA) model. OBJECTIVES: This study examined whether autologous BMSCs incubated with ellipticine (Ellip.+BMSCs) could regenerate articular cartilage in rabbit OA, a model similar to degenerative arthritis in human beings. METHODS: A portion of rabbit articular cartilage was surgically removed, and Ellip.+BMSCs were transplanted into the lesion area. After two and four weeks of treatment, the serum levels of proinflammatory cytokines, i.e., tumor necrosis factor α (TNF-α) and prostaglandin E2 (PGE2), were analyzed, while macroscopic and micro-computed tomography (CT) evaluations were conducted to determine the intensity of cartilage degeneration. Furthermore, immuno-blotting was performed to evaluate the mitogen-activated protein kinases, PI3K/Akt, and nuclear factor-κB (NF-κB) signaling in rabbit OA models. Histological staining was used to confirm the change in the pattern of collagen and proteoglycan in the articular cartilage matrix. RESULTS: The transplantation of Ellip.+BMSCs elicited a chondroprotective effect by reducing the inflammatory factors (TNF-α, PGE2) in a time-dependent manner. Macroscopic observations, micro-CT, and histological staining revealed articular cartilage regeneration with the downregulation of matrix-metallo proteinases (MMPs), preventing articular cartilage degradation. Furthermore, histological observations confirmed a significant boost in the production of chondrocytes, collagen, and proteoglycan compared to the control group. Western blotting data revealed the downregulation of the p38, PI3K-Akt, and NF-κB inflammatory pathways to attenuate inflammation. CONCLUSIONS: The transplantation of Ellip.+BMSCs normalized the OA condition by boosting the recovery of degenerated articular cartilage and inhibiting the catabolic signaling pathway.


Assuntos
Cartilagem Articular , Elipticinas , Coelhos , Humanos , Animais , Cartilagem Articular/metabolismo , Cartilagem Articular/patologia , NF-kappa B/metabolismo , Proteínas Proto-Oncogênicas c-akt/metabolismo , Fosfatidilinositol 3-Quinases/metabolismo , Elipticinas/metabolismo , Microtomografia por Raio-X , Inflamação/veterinária , Proteoglicanas/metabolismo , Colágeno/metabolismo , Células da Medula Óssea/metabolismo
4.
Protein Sci ; 32(12): e4819, 2023 Dec.
Artigo em Inglês | MEDLINE | ID: mdl-37883077

RESUMO

Ferritin, a naturally occurring iron storage protein, has gained significant attention as a drug delivery platform due to its inherent biocompatibility and capacity to encapsulate therapeutic agents. In this study, we successfully genetically engineered human H ferritin by incorporating 4 or 6 tryptophan residues per subunit, strategically oriented towards the inner cavity of the nanoparticle. This modification aimed to enhance the encapsulation of hydrophobic drugs into the ferritin cage. Comprehensive characterization of the mutants revealed that only the variant carrying four tryptophan substitutions per subunit retained the ability to disassemble and reassemble properly. As a proof of concept, we evaluated the loading capacity of this mutant with ellipticine, a natural hydrophobic indole alkaloid with multimodal anticancer activity. Our data demonstrated that this specific mutant exhibited significantly higher efficiency in loading ellipticine compared to human H ferritin. Furthermore, to evaluate the versatility of this hydrophobicity-enhanced ferritin nanoparticle as a drug carrier, we conducted a comparative study by also encapsulating doxorubicin, a commonly used anticancer drug. Subsequently, we tested both ellipticine and doxorubicin-loaded nanoparticles on a promyelocytic leukemia cell line, demonstrating efficient uptake by these cells and resulting in the expected cytotoxic effect.


Assuntos
Antineoplásicos , Elipticinas , Nanopartículas , Humanos , Ferritinas/genética , Ferritinas/química , Apoferritinas/genética , Triptofano , Antineoplásicos/farmacologia , Antineoplásicos/química , Sistemas de Liberação de Medicamentos , Portadores de Fármacos/química , Doxorrubicina/farmacologia , Doxorrubicina/química , Nanopartículas/química , Interações Hidrofóbicas e Hidrofílicas , Linhagem Celular Tumoral
5.
Acta cir. bras ; 38: e385623, 2023. graf
Artigo em Inglês | LILACS, VETINDEX | ID: biblio-1527589

RESUMO

Purpose: Diabetes mellitus is a serious health problem worldwide, and diabetic nephropathy is the complication. The diabetic nephropathy considerably enhances the oxidative stress, glycation, lipid parameters and inflammatory reaction. Ellipticine has potent free radical scavenging and anti-inflammatory effect. Methods: In the current study, our objectives were to thoroughly examine the renal protective effects of ellipticine in a rat model of streptozotocin (STZ)-induced diabetic nephropathy (DN) and to elucidate the underlying mechanisms involved. For the induction of diabetic nephropathy, streptozotocin (50 mg/kg) was used, and rats were separated into groups and given varying doses of ellipticine (2.5, 5 and 7.5 mg/kg). The body weight, and renal weight were estimated. The inflammatory cytokines, renal biomarkers, inflammatory antioxidant, and urine parameters were estimated. Results: Result showed that ellipticine considerably enhanced the body weight and reduced the renal tissue weight. Ellipticine treatment significantly (P < 0.001) repressed the level of blood urea nitrogen, serum creatinine, uric acid, blood glucose and altered the lipid parameters. Ellipticine significantly (P < 0.001) repressed the level of malonaldehyde and boosted the glutathione, catalase, superoxide dismutase, and glutathione peroxidase. Ellipticine treatment significantly (P < 0.001) reduced the inflammatory cytokines and inflammatory mediators. Conclusions: Ellipticine could be a renal protective drug via attenuating the inflammatory reaction, fibrosis and oxidative stress in streptozotocin induced rats.


Assuntos
Animais , Ratos , Estreptozocina , Estresse Oxidativo , Nefropatias Diabéticas , Elipticinas , Inflamação , Antioxidantes
6.
J Org Chem ; 87(19): 13034-13052, 2022 10 07.
Artigo em Inglês | MEDLINE | ID: mdl-36153994

RESUMO

Palladium-catalyzed functionalization was presently performed on two building blocks: 4-oxazolin-2-ones and 4-methylene-2-oxazolidinones. Direct Heck arylation of 4-oxazolin-2-ones led to a series of 5-aryl-4-oxazolin-2-ones, including analogues with N-chiral auxiliary, in an almost quantitative yield. The Pd(II)-catalyzed homocoupling reaction of 4-oxazolin-2-ones provided novel heterocyclic across-ring dienes. Meanwhile, the intramolecular cross-coupling of N-aryl-4-methylene-2-oxazolidinones furnished a series of oxazolo[3,4-a]indol-3-ones. Further functionalization of 4-methylene-2-oxazolidinones afforded substituted indoles and heterocyclic-fused indoles with aryl, bromo, carbinol, formyl, and vinyl groups. A computational study was carried out to account for the behavior of the formylated derivatives. The currently developed methodology was applied to a new formal total synthesis of ellipticine.


Assuntos
Elipticinas , Oxazolidinonas , Catálise , Indóis , Metano/análogos & derivados , Metanol , Paládio
7.
J Phys Chem A ; 126(27): 4326-4341, 2022 Jul 14.
Artigo em Inglês | MEDLINE | ID: mdl-35766331

RESUMO

In this work, we report the benchmark binding energies of the seven complexes within the L7 data set, six host-guest complexes from the S12L data set, a C60 dimer, the DNA-ellipticine intercalation complex, and the largest system of the study, the HIV-indinavir system, which contained 343 atoms or 139 heavy atoms. The high-quality values reported were obtained via a focal point method that relies on the canonical form of second-order Møller-Plesset theory and the domain-based local pair natural orbital scheme for the coupled cluster with single double and perturbative triple excitations [DLPNO-CCSD(T)] extrapolated to the complete basis set (CBS) limit. The results in this work not only corroborate but also improve upon some previous benchmark values for large noncovalent complexes albeit at a relatively steep cost. Although local CCSD(T) and the largely successful fixed-node diffusion Monte Carlo (FN-DMC) have been shown to generally agree for small- to medium-size systems, a discrepancy in their reported binding energy values arises for large complexes, where the magnitude of the disagreement is a definite cause for concern. For example, the largest deviation in the L7 data set was 2.8 kcal/mol (∼10%) on the low end in C3GC. Such a deviation only grows worse in the S12L set, which showed a difference of up to 10.4 kcal/mol (∼25%) by a conservative estimation in buckycatcher-C60. The DNA-ellipticine complex also generated a disagreement of 4.4 kcal/mol (∼10%) between both state-of-the-art methods. The disagreement between local CCSD(T) and FN-DMC in large noncovalent complexes shows that it is urgently needed to have the canonical CCSD(T), the Monte Carlo CCSD(T), or the full configuration interaction quantum Monte Carlo approaches available to large systems on the hundred-atom scale to solve this dilemma. In addition, the performances of cheaper popular computational methods were assessed for the studied complexes with respect to DLPNO-CCSD(T)/CBS. r2SCAN-3c, B97M-V, and PBE0+D4 work well in large noncovalent complexes in this work, and GFN2-xTB performs well in π-π stacking complexes. B97M-V is the most reliable computationally efficient approach to predicting noncovalent interactions for large complexes, being the only one to have binding errors within the so-called 1 kcal/mol "chemical accuracy". The benchmark interaction energies of these host-guest complexes, molecular materials, and biological systems with electronic and medicinal implications provide crucial reference data for the improvement of current and future lower-cost methods.


Assuntos
Elipticinas , Infecções por HIV , Benchmarking , DNA , Humanos , Indinavir , Teoria Quântica
8.
Int J Mol Sci ; 23(11)2022 May 30.
Artigo em Inglês | MEDLINE | ID: mdl-35682799

RESUMO

Ellipticine is an indole alkaloid with proven antitumor activity against various tumors in vitro and a diverse mechanism of action, which includes topoisomerase II inhibition, intercalation, and cell cycle impact. Olivacine-ellipticine's isomer-shows similar properties. The objectives of this work were as follows: (a) to find a new path of olivacine synthesis, (b) to study the cytotoxic properties of olivacine and ellipticine in comparison to doxorubicin as well as their impact on the cell cycle, and (c) to investigate the cellular pharmacokinetics of the tested compounds to understand drug resistance in cancer cells better. SRB and MTT assays were used to study the anticancer activity of olivacine and ellipticine in vitro. Both compounds showed a cytotoxic effect on various cell lines, most notably on the doxorubicin-resistant LoVo/DX model, with olivacine's cytotoxicity approximately three times higher than doxorubicin. Olivacine proved to be less effective against cancer cells and less cytotoxic to normal cells than ellipticine. Olivacine proved to have fluorescent properties. Microscopic observation of cells treated with olivacine showed the difference in sensitivity depending on the cell line, with A549 cells visibly affected by a much lower concentration of olivacine than normal NHDF cells. An increased percentage of cells in G0/G1 was observed after treatment with olivacine and ellipticine, suggesting an impact on cell cycle progression, potentially via higher p53 protein expression, which blocks the transition from G0/G1 to the S phase. Ellipticine induced apoptosis at a concentration as low as 1 µM. It has been proved that the tested compounds (ellipticine and olivacine) undergo lysosomal exocytosis. Reducing exocytosis is possible through the use of compounds that inhibit the activity of the proton pump. Olivacine and ellipticine exhibited diverse cytotoxicity against a panel of cancer cells. Analysis of the lysosomal exocytosis of olivacine and ellipticine shows the need to look for derivatives with comparable anticancer activity but reduced weak base character.


Assuntos
Antineoplásicos , Elipticinas , Neoplasias , Antineoplásicos/farmacologia , Doxorrubicina/farmacologia , Resistência a Medicamentos , Elipticinas/farmacologia , Exocitose , Lisossomos
9.
Ann Hepatol ; 27(4): 100701, 2022.
Artigo em Inglês | MEDLINE | ID: mdl-35351639

RESUMO

INTRODUCTION AND OBJECTIVES: Hepatocellular carcinoma (HCC) ranks third on the list of the leading cause for cancer death globally. The treatment of HCC patients is unsatisfactory. However, the traditional Chinese medicine Chebulae Fructus has potential efficacy in the treatment of HCC. MATERIALS AND METHODS: We mined the active ingredients of Chebulae Fructus and its main targets from the Traditional Chinese Medicine Systems Pharmacology database. HCC-related datasets were downloaded from The Cancer Genome Atlas database and differentially expressed genes (DEGs) in HCC were obtained by differential expression analysis. Top10 small molecule compounds capable of reversing HCC pathology were screened by the Connectivity Map database based on DEGs. Ellipticine, an extract of Chebulae Fructus, had the potential to reverse HCC pathology. Protein-Protein Interaction (PPI) networks of DEGs in HCC were constructed using STRING. Eighteen potential targets of Chebulae Fructus for the treatment of HCC were obtained by taking intersection of DEGs in HCC with targets corresponding to the active constituents of Chebulae Fructus. In addition, MTT assay was also employed to examine the effect of ellipticine on HCC cell viability. RESULTS: It has been shown that ellipticine and ellagic acid have antitumor activity. Random Walk with Restart analysis of PPI networks was performed using potential targets as seeds, and the genes with the top 50 affinity coefficients were selected to construct a drug-active constituent-gene interaction network. Gene Ontology and Kyoto Encyclopedia of Genes and Genomes enrichment analyses of key genes involved in the treatment of HCC with Chebulae Fructus demonstrated that these genes were mainly enriched in signaling pathways related to tumor metabolism such as cAMP signaling pathway and Ras signaling pathway. Finally, it was verified by MTT assay that proliferation of HCC cells could be remarkably hindered. CONCLUSIONS: We excavated ellipticine, a key active constituent of Chebulae Fructus, by network pharmacology, and elucidated the signaling pathways involved in Chebulae Fructus, providing a theoretical basis for the use of Chebulae Fructus for HCC clinical application.


Assuntos
Carcinoma Hepatocelular , Elipticinas , Neoplasias Hepáticas , Carcinoma Hepatocelular/tratamento farmacológico , Carcinoma Hepatocelular/genética , Carcinoma Hepatocelular/metabolismo , Biologia Computacional , Perfilação da Expressão Gênica , Humanos , Neoplasias Hepáticas/tratamento farmacológico , Neoplasias Hepáticas/genética , Neoplasias Hepáticas/metabolismo , Farmacologia em Rede , Extratos Vegetais , Mapas de Interação de Proteínas , Terminalia
10.
J Org Chem ; 87(12): 7610-7617, 2022 06 17.
Artigo em Inglês | MEDLINE | ID: mdl-35171607

RESUMO

Ellipticine was synthesized in six steps and 20% global yield starting from the readily available 2,5-dimethoxy isoquinoline. Unprecedented regioselective control of the nucleophilic attack on the isoquinoline-5,8-dione is first described. Investigation of the possible pathways of this transformation through density functional theory calculations reveals unexpected N-oxide assistance in cascade tautomerizations, which was crucial for directing the nucleophilic attack and hastening the overall process. Using this strategy, we prepared the aniline-isoquinolinedione adduct and submitted it to an intramolecular double C-H cross-coupling activation to furnish ellipticinequinone, which gave ellipticine after a MeLi addition/BH3 reduction sequence.


Assuntos
Elipticinas , Isoquinolinas
11.
Nat Prod Res ; 36(14): 3657-3664, 2022 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-33517779

RESUMO

In this work, eleven new derivatives were prepared of the alkaloid olivacine (1), which was isolated from the bark of Aspidosperma australe. These compounds (7a-k) are hybrids of olivacine and indoles or carbazole, tethered by alkyl chains of variable lengths (C-4, C-5 or C-6). Compounds 7a-k showed increased cytotoxicity towards a panel of four cell lines. The subcellular localization of olivacine and of the synthetic derivatives was studied by fluorescence microscopy. The cycles of K562 cells exposed to olivacine or compounds 7a-k were analysed by flow cytometry, and showed, for some of the new derivatives, a different profile of cell distribution among the phases of the cycle when compared to olivacine, which is indicative of lysosomal apoptosis.


Assuntos
Alcaloides , Antineoplásicos , Elipticinas , Ensaios de Seleção de Medicamentos Antitumorais , Indóis/farmacologia
12.
Yakugaku Zasshi ; 141(12): 1281-1288, 2021.
Artigo em Japonês | MEDLINE | ID: mdl-34853199

RESUMO

We are developing the synthesis of biologically interesting carbazole compounds, including natural products by tandem cyclic reactions. In this report, we describe the new synthesis of carbazole-1,4-quinones as follows; 1) the synthesis of carbazole-1,4-quinones using a tandem ring closing metathesis (RCM) -dehydrogenation reaction, 2) a novel one-pot synthesis of carbazole-1,4-quinone by consecutive Pd-catalyzed cyclocarbonylation, desilylation, and oxidation reactions. Two new synthetic strategies were applied to the synthesis of carbazole-1,4-quinone alkaloids and ellipticine quinones, and then the antiproliferative activity against HCT-116 and HL-60 cells of the synthesized compounds were evaluated.


Assuntos
Produtos Biológicos/síntese química , Carbazóis/síntese química , Descoberta de Drogas/métodos , Antineoplásicos , Carbazóis/farmacologia , Catálise , Ciclização , Elipticinas/síntese química , Elipticinas/farmacologia , Células HCT116 , Células HL-60 , Humanos , Fenômenos de Química Orgânica , Oxirredução , Paládio/química , Quinonas/síntese química , Quinonas/farmacologia
13.
Int J Mol Sci ; 22(16)2021 Aug 23.
Artigo em Inglês | MEDLINE | ID: mdl-34445773

RESUMO

Inadequate vessel maintenance or growth causes ischemia in diseases such as myocardial infarction, stroke, and neurodegenerative disorders. Therefore, developing an effective strategy to salvage ischemic tissues using a novel compound is urgent. Drug repurposing has become a widely used method that can make drug discovery more efficient and less expensive. Additionally, computational virtual screening tools make drug discovery faster and more accurate. This study found a novel drug candidate for pro-angiogenesis by in silico virtual screening. Using Gene Expression Omnibus (GEO) microarray datasets related to angiogenesis studies, differentially expressed genes were identified and characteristic direction signatures extracted from GEO2EnrichR were used as input data on L1000CDS2 to screen pro-angiogenic molecules. After a thorough review of the candidates, a list of compounds structurally similar to TWS-119 was generated using ChemMine Tools and its clustering toolbox. ChemMine Tools and ChemminR structural similarity search tools for small-molecule analysis and clustering were used for second screening. A molecular docking simulation was conducted using AutoDock v.4 to evaluate the physicochemical effect of secondary-screened chemicals. A cell viability or toxicity test was performed to determine the proper dose of the final candidate, ellipticine. As a result, we found ellipticine, which has pro-angiogenic effects, using virtual computational methods. The noncytotoxic concentration of ellipticine was 156.25 nM. The phosphorylation of glycogen synthase kinase-3ß was decreased, whereas the ß-catenin expression was increased in human endothelial cells treated with ellipticine. We concluded that ellipticine at sublethal dosage could be successfully repositioned as a pro-angiogenic substance by in silico virtual screening.


Assuntos
Elipticinas/farmacologia , Células Endoteliais da Veia Umbilical Humana/efeitos dos fármacos , Neovascularização Patológica/tratamento farmacológico , Sobrevivência Celular/efeitos dos fármacos , Células Cultivadas , Descoberta de Drogas/métodos , Reposicionamento de Medicamentos/métodos , Expressão Gênica/efeitos dos fármacos , Glicogênio Sintase Quinase 3 beta/metabolismo , Células Endoteliais da Veia Umbilical Humana/metabolismo , Humanos , Simulação de Acoplamento Molecular/métodos , Simulação de Dinâmica Molecular , Neovascularização Patológica/metabolismo , Ligação Proteica/efeitos dos fármacos , beta Catenina/metabolismo
14.
Int J Mol Sci ; 22(16)2021 Aug 06.
Artigo em Inglês | MEDLINE | ID: mdl-34445198

RESUMO

Olivacine and ellipticine are model anticancer drugs acting as topoisomerase II inhibitors. Here, we present investigations performed on four olivacine derivatives in light of their antitumor activity. The aim of this study was to identify the best antitumor compound among the four tested olivacine derivatives. The study was performed using CCRF/CEM and MCF-7 cell lines. Comet assay, polarography, inhibition of topoisomerase II activity, histone acetylation, and molecular docking studies were performed. Each tested compound displayed interaction with DNA and topoisomerase II, but did not cause histone acetylation. Compound 2 (9-methoxy-5,6-dimethyl-1-({[1-hydroxy-2-(hydroxymethyl)butan-2-yl]amino}methyl)-6H-pyrido[4,3-b]carbazole) was found to be the best candidate as an anticancer drug because it had the highest affinity for topoisomerase II and caused the least genotoxic damage in cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Elipticinas/química , Elipticinas/farmacologia , Inibidores da Topoisomerase II/química , Inibidores da Topoisomerase II/farmacologia , Linhagem Celular Tumoral , Sobrevivência Celular/efeitos dos fármacos , DNA/metabolismo , DNA Topoisomerases Tipo II/metabolismo , Humanos , Simulação de Acoplamento Molecular , Neoplasias/tratamento farmacológico , Neoplasias/metabolismo , Células Tumorais Cultivadas
15.
J Chem Phys ; 154(15): 154104, 2021 Apr 21.
Artigo em Inglês | MEDLINE | ID: mdl-33887937

RESUMO

In this work, benchmark binding energies for dispersion-bound complexes in the L7 dataset, the DNA-ellipticine intercalation complex, and the buckycatcher-C60 complex with 120 heavy atoms using a focal-point method based on the canonical form of second-order Møller-Plesset theory (MP2) and the domain based local pair natural orbital scheme for the coupled cluster with single, double, and perturbative triple excitations [CCSD(T)] extrapolated to the complete basis set (CBS) limit are reported. This work allows for increased confidence given the agreement with respect to values recently obtained using the local natural orbital CCSD(T) for L7 and the canonical CCSD(T)/CBS result for the coronene dimer (C2C2PD). Therefore, these results can be considered pushing the CCSD(T)/CBS binding benchmark to the hundred-atom scale. The disagreements between the two state-of-the-art methods, CCSD(T) and fixed-node diffusion Monte Carlo, are substantial with at least 2.0 (∼10%), 1.9 (∼5%), and 10.3 kcal/mol (∼25%) differences for C2C2PD in L7, DNA-ellipticine, and buckycatcher-C60, respectively. Such sizable discrepancy above "chemical accuracy" for large noncovalent complexes indicates how challenging it is to obtain benchmark binding interactions for systems beyond small molecules, although the three up-to-date density functionals, PBE0+D4, ωB97M-V, and B97M-V, agree better with CCSD(T) for these large systems. In addition to reporting these values, different basis sets and various CBS extrapolation parameters for Hartree-Fock and MP2 correlation energies were tested for the first time in large noncovalent complexes with the goal of providing some indications toward optimal cost effective routes to approach the CBS limit without substantial loss in quality.


Assuntos
DNA/química , Elipticinas/química , Fulerenos/química , Substâncias Macromoleculares/química , Bases de Dados de Compostos Químicos , Termodinâmica
16.
Appl Environ Microbiol ; 87(10)2021 04 27.
Artigo em Inglês | MEDLINE | ID: mdl-33674433

RESUMO

Streptococcal toxic shock-like syndrome (STSLS) caused by the epidemic strain of Streptococcus suis leads to severe inflammation and high mortality. The life and health of humans and animals are also threatened by the increasingly severe antimicrobial resistance in Streptococcus suis There is an urgent need to discover novel strategies for the treatment of S. suis infection. Suilysin (SLY) is considered to be an important virulence factor in the pathogenesis of S. suis In this study, ellipticine hydrochloride (EH) was reported as a compound that antagonizes the hemolytic activity of SLY. In vitro, EH was found to effectively inhibit SLY-mediated hemolytic activity. Furthermore, EH had a strong affinity for SLY, thereby directly binding to SLY to interfere with the hemolytic activity. Meanwhile, it was worth noting that EH was also found to have a significant antibacterial activity. In vivo, compared with traditional ampicillin, EH not only significantly improved the survival rate of mice infected with S. suis 2 strain Sc19 but also relieved lung pathological damage. Furthermore, EH effectively decreased the levels of inflammatory cytokines (interleukin-6 [IL-6], tumor necrosis factor alpha [TNF-α]) and blood biochemistry enzymes (alanine transaminase [ALT], aspartate transaminase [AST], creatine kinase [CK]) in Sc19-infected mice. Additionally, EH markedly reduced the bacterial load of tissues in Sc19-infected mice. In conclusion, our findings suggest that EH can be a potential compound for treating S. suis infection in view of its antibacterial and antihemolysin activity.IMPORTANCE In recent years, the inappropriate use of antibiotics has unnecessarily caused the continuous emergence of resistant bacteria. The antimicrobial resistance of Streptococcus suis has also become an increasingly serious problem. Targeting virulence can reduce the selective pressure of bacteria on antibiotics, thereby alleviating the development of bacterial resistance to a certain extent. Meanwhile, the excessive inflammatory response caused by S. suis infection is considered the primary cause of acute death. Here, we found that ellipticine hydrochloride (EH) exhibited effective antibacterial and antihemolysin activities against S. suisin vitroIn vivo, compared with ampicillin, EH had a significant protective effect on S. suis serotype 2 strain Sc19-infected mice. Our results indicated that EH, with dual antibacterial and antivirulence effects, will contribute to treating S. suis infections and alleviating the antimicrobial resistance of S. suis to a certain extent. More importantly, EH may develop into a promising drug for the prevention of acute death caused by excessive inflammation.


Assuntos
Antibacterianos/uso terapêutico , Proteínas de Bactérias/metabolismo , Elipticinas/uso terapêutico , Proteínas Hemolisinas/metabolismo , Infecções Estreptocócicas/tratamento farmacológico , Streptococcus suis , Fatores de Virulência/metabolismo , Animais , Antibacterianos/farmacologia , Citocinas/sangue , Modelos Animais de Doenças , Elipticinas/farmacologia , Feminino , Hemólise/efeitos dos fármacos , Camundongos Endogâmicos BALB C , Infecções Estreptocócicas/sangue , Streptococcus suis/efeitos dos fármacos , Streptococcus suis/crescimento & desenvolvimento , Streptococcus suis/metabolismo
17.
J Am Chem Soc ; 142(49): 20600-20604, 2020 12 09.
Artigo em Inglês | MEDLINE | ID: mdl-33253551

RESUMO

Guanine- and cytosine-rich nucleic acid sequences have the potential to form secondary structures such as G-quadruplexes and i-motifs, respectively. We show that stabilization of G-quadruplexes using small molecules destabilizes the i-motifs, and vice versa, indicating these gene regulatory controllers are interdependent in human cells. This has important implications as these structures are predominately considered as isolated structural targets for therapy, but their interdependency highlights the interplay of both structures as an important gene regulatory switch.


Assuntos
Quadruplex G , Sequência de Bases , Pontos de Checagem do Ciclo Celular/efeitos dos fármacos , Núcleo Celular/química , Núcleo Celular/metabolismo , Cromatina/metabolismo , Elipticinas/farmacologia , Quadruplex G/efeitos dos fármacos , Loci Gênicos , Humanos , Ligantes , Células MCF-7
18.
Molecules ; 25(11)2020 May 28.
Artigo em Inglês | MEDLINE | ID: mdl-32481577

RESUMO

Olivacine is an alkaloid-containing pyridocarbazole structure. It is isolated from the bark of the evergreen timber tree, Aspidosperma olivaceum. Its well-documented anticancer activity led to the synthesis of new derivatives, which are semisynthetic and fully synthetic pyridocarbazoles. This study aimed to evaluate the potential antineoplastic activity of four newly synthesized olivacine derivatives. Multidrug resistance is a common phenomenon causing failure in the chemotherapy of many tumors. It is mainly related to increased function of P-glycoprotein, an efflux pump removing cytostatic out of the cells. The cell lines used in the study were colorectal carcinoma cell lines: LoVo (doxorubicin-sensitive) and LoVo/DX (doxorubicin-resistant). The NHDF cell line was used to assess cell viability. First, the cells were incubated with olivacine derivatives. In the next step, the following assays were performed: DCF-DA assay, MTT assay, rhodamine 123 assay, detection of apoptosis, proliferation inhibition-mitotic index. The tested compounds showed higher antineoplastic potential and lower toxicity than the reference compound ellipticine. The results indicate that the new olivacine derivatives are good candidates for future anticancer drugs.


Assuntos
Membro 1 da Subfamília B de Cassetes de Ligação de ATP/metabolismo , Antineoplásicos/farmacologia , Elipticinas/farmacologia , Apoptose/efeitos dos fármacos , Aspidosperma/metabolismo , Linhagem Celular , Linhagem Celular Tumoral , Proliferação de Células/efeitos dos fármacos , Sobrevivência Celular/efeitos dos fármacos , Resistencia a Medicamentos Antineoplásicos , Ensaios de Seleção de Medicamentos Antitumorais , Humanos
19.
Molecules ; 25(9)2020 May 01.
Artigo em Inglês | MEDLINE | ID: mdl-32370100

RESUMO

Cancer still remains a major public health concern around the world and the search for new potential antitumor molecules is essential for fighting the disease. This study evaluated the anticancer and immunomodulatory potential of the newly synthetized ellipticine derivate: sodium bromo-5,11-dimethyl-6H-pyrido[4,3-b]carbazole-7-sulfonate (Br-Ell-SO3Na). It was prepared by the chlorosulfonation of 9-bromoellipticine. The ellipticine-7-sulfonic acid itself is not soluble, but its saponification with sodium hydroxide afforded a water-soluble sodium salt. The cytotoxicity of Br-Ell-SO3Na was tested against cancerous (K562 cell line) and non-cancerous cells (Vero cell line and human peripheral blood mononuclear cells (PBMC)) using a Methylthiazoletetrazolium (MTT) assay. Cell cycle arrest was assessed by flow cytometry and the immunomodulatory activity was analyzed through an enzyme-linked immunosorbent assay (ELISA). The results showed that the Br-Ell-SO3Na molecule has specific anticancer activity (IC50 = 35 µM) against the K562 cell line, once no cytotoxicity effect was verified against non-cancerous cells. Cell cycle analysis demonstrated that K562 cells treated with Br-Ell-SO3Na were arrested in the phase S. Moreover, the production of IL-6 increased and the expression of IL-8 was inhibited in the human PBMC treated with Br-Ell-SO3Na. The results demonstrated that Br-Ell-SO3Na is a promising anticancer molecule attested by its noteworthy activity against the K562 tumor cell line and immunomodulatory activity in human PBMC cells.


Assuntos
Antineoplásicos/química , Antineoplásicos/farmacologia , Elipticinas/química , Elipticinas/farmacologia , Fatores Imunológicos/química , Fatores Imunológicos/farmacologia , Antineoplásicos/síntese química , Ciclo Celular/efeitos dos fármacos , Linhagem Celular Tumoral , Técnicas de Química Sintética , Relação Dose-Resposta a Droga , Elipticinas/síntese química , Humanos , Fatores Imunológicos/síntese química , Imunomodulação/efeitos dos fármacos , Estrutura Molecular , Solubilidade , Água
20.
J Cancer Res Clin Oncol ; 146(7): 1671-1676, 2020 Jul.
Artigo em Inglês | MEDLINE | ID: mdl-32333143

RESUMO

BACKGROUND: DNA topoisomerase and telomerase enzymes are popular targets of several anti-tumor drugs. Smooth proceeding of telomeric recombination requires Topoisomerase II (Top2), which is involved in telomere-telomere recombination through functioning in relaxation of positive supercoils among the cells adopting telomerase-independent Alternative lengthening of telomere (ALT) pathway. Most of the inhibitors reported so far have been designed to targetsolely telomerase-positive cells, which can potentially lead to therapeutic failure because tumor cells treated with telomerase inhibitors can activate the ALT pathway for telomere maintenance. Knowing that ALT cells are more sensitive against a Top2 inhibitor, ICRF-93 agent, compared to telomerase-positive cells, we analyzed two selected ellipticine derivatives that we recently reported as TopII-targeting compounds, to assess their effects on the formation of DNA breaks and suppression of ALT pathway. METHODS: Cell viability, Comet, C-Circle assays, dot blot, immunofluorescence staining, and telomere fluorescence in situ hybridization (FISH) staining were used for determining the effect of the compounds on ALT status of tumor cells. RESULTS AND CONCLUSIONS: Treatment of ALT cells with ellipticine derivatives resulted in the formation of DNA breaks and suppression of ALT-associated phenotypes in vitro. Our results will contribute to the development of therapeutic strategies combining telomerase and ALT pathway inhibitors.


Assuntos
Antineoplásicos/farmacologia , Elipticinas/farmacologia , Telomerase/genética , Homeostase do Telômero/efeitos dos fármacos , Inibidores da Topoisomerase II/farmacologia , Antineoplásicos/química , Linhagem Celular , Elipticinas/química , Imunofluorescência , Humanos , Hibridização in Situ Fluorescente
SELEÇÃO DE REFERÊNCIAS
DETALHE DA PESQUISA
...